
April 27th, 2017 | TroyEngineering Analysis & Simulation in the Automotive Industry: Electrification & Advanced Lightweighting Techniquesnafems.org/americas

Crashworthiness Prediction Of 

Composite Vehicle Structures

Xinran Xiao

Michigan State University

1



April 27th, 2017 | TroyEngineering Analysis & Simulation in the Automotive Industry: Electrification & Advanced Lightweighting Techniquesnafems.org/americas

Outline

• Composite crashworthiness, what can 

we predict?

• Past experience

• Recent progress

• Conclusion and outlook

2



April 27th, 2017 | TroyEngineering Analysis & Simulation in the Automotive Industry: Electrification & Advanced Lightweighting Techniquesnafems.org/americas

Crashworthiness Prediction of Composite Structures
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Al chassiscarbon-fiber: hood (inner and outer) and 

roof panel; SMC: quarters, doors, hatch; 

carbon nano-composite floor pan.

Can we predict the crashworthiness performance of composite structures?

2014 Corvette C7
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Crashworthiness Prediction of Composite Structures

Body panels Primary energy absorbing structures
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• The modeling method for composite hood was 

established in the design of a different vehicle.

• The design,  iterations,  and material selection 

were evaluated by FEA only.

• The predicted response agreed well with a test 

conducted later.

� Existing composite models are sufficient to 

predict the body panels.

Predictions Of Composite Body Panels

Xiao, SPE Automotive Composites Conference, 2007 Collaboration with John Morley, 2004-05
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• Body panels �

• Primary energy absorbing structures ?
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Composite Crashworthiness, What Can 

We Predict?

Photo courtesy: ENGENUITY
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D. Hull, 1988

Axial Crush of Tubes

• A measure of the specific energy 
absorption (SEA) of a material

• A benchmark problem to gauge the 
capability to model primary energy 
absorbing structures

McGregor et al, Comp A, 2008
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• Extensive failure, resin pulverize, fiber rupture, 

delamination…

• Require to model the behavior much beyond the failure 

criterion 

• Require experimental techniques to characterize the 

properties of composites with damage 

Challenge In Modeling Composite Primary 

Energy Absorbing Structures

DP steel tube

Photo courtesy: M.Starbuck

PW carbon composite Braided carbon composite

Kevlar composite

Photo courtesy: A. Browne
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Composite Material Models  In Commercial Codes
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Phenomenological models with 
homogenized properties

• Orthotropic solid
– Brick (solid) element

E1, E2, E3, G12, G23, G31, ν12, ν23, ν31

– Shell (plate) E1, E2, G12, ν12

• Failure criteria

• Property degradation beyond failure

� Progressive failure models

� Damage mechanics models

Daniel and Ishai, 

Engineering Mechanics of 

Composite Materials, 1994.



April 27th, 2017 | TroyEngineering Analysis & Simulation in the Automotive Industry: Electrification & Advanced Lightweighting Techniquesnafems.org/americas

Continuum Damage Mechanics (CDM) Model
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CDM Fracture mechanicsContinuum mechanics CDM Fracture mechanicsContinuum mechanics
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Axial Crush Of Braided Carbon Composite Tubes

• Triaxial braided composite tubes, 0/±30, 0/±45, 0/±60, 1-ply, 2-ply, 4-ply

• The tube front edge with 45°chamfer

• Tested with or without a plug initiator

• Simulation with LS-DYNA, each ply was modeled with one layer of shell 

with MAT58. Delamination was modeled with contact tiebreak 

13
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Simulation Of Axial Crush Of Braided Carbon Composite 

Tubes With MAT58 (MLT model1) in LS-DYNA 

• With plug, underestimate SEA ~20%

• No plug, underestimate SEA~40%, 

instability
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• CDM model cannot represent the 
unloading response of substantially 
damaged composites 

� Underestimate the total 

energy absorption

• The stiffness of the damaged 
composite modeled by CDM is 
much lower than experimental value 

� Tendency to instability
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DeTerasa’s compression experiment, 2001

Limitations of Continuum Damage Mechanics 

Models in Composite Crash Simulations

Xiao et al, Thin-walled Struc, 2009
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Modification of MLT model (2007)
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Coupled model

Xiao,  Int J Damage Mechanics, 2010.
Matzenmiller et al,  Mech Materials, 1995

Plasticity onset at threshold strain 

Stress increment 

0 0(1 ) (1 )e d E d Eσ ε α ε∆ = ∆ − = ∆ −

MLT model

Coupled CDM-plasticity  model and its 

implementation in LS-DYNA 
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Classic CDM
Coupled model

Case 1 1-ply triaxially braided tube under
axial impact
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Xiao,  Int J Damage Mechanics, 2010.

A Coupled Damage-Plasticity Model 

for Composite Crash Simulations
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Enhanced Continuum Damage Mechanics Model 

• The pre-failure and post-
failure regions are described 
by two separate sub-models.

• A residual state is defined by 
either a residual stiffness or a 
residual strength.

• Implemented as LS-DYNA 

user material model 

20

Danghe Shi,  PhD thesis, 

Dec 2015.
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Enhanced Continuum Damage Mechanics Model 

• Failure criteria

• The pre-failure and post-failure regions are described by two 

separate sub-models.
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• Residual property

• Element deletion

22
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Enhanced Continuum Damage Mechanics Model 
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Shi, 2015.
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Quasi-static coupon testing of a braided composite

ECDM vs. MAT58 
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• More realistic crush front 

morphology

• Slightly better Force-

Displacement responses

ECDM ExperimentMAT58
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ECDM vs. MAT58 



A Shell-Beam Modeling Method for Crash Simulation 

of Thin-Walled Composite Tubes  

Shi, Xiao,  Composite Structures, 2017.

• A shell-beam element 

consists of 2 shell 

elements and 4 beam 

elements.

• A composite layer is 

represented by a shell-

beam element.

� The shell-beam 

element is as stable as 

the solid element but 

much more efficient.

25
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� Triaxial braided composite tubes, [0/±45] braid architecture, 5 configurations

� The crash front edge was machined with 45°chamfer

� Tested with or without a plug initiator

� Tubes were modeled with four-node fully integrated shell elements

� Each ply was modeled with one layer of shell

� *CONTACT_AUTOMATIC_ONE_WAY_SURFACE_TO_SURFACE_TIEBREAK

Evaluation of the ECDM Model 
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Simulations and Predictions: 2×2” [0/±45] Tubes 
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2×2” [0/±45]2 with plug 

Correlated Predicted

ECDM + Shell-beam

2×2” [0/±45]4 with plug 2×2” [0/±45]4 without plug 



28

2×2” [0/±45]4 with plug 2×2” [0/±45]4 without plug

Simulations 2×2” [0/±45] Tubes 



Force-displacement response

Simulations and Predictions: 2×2” [0/±45] Tubes 

2×2” [0/±45]2 with plug 2×2” [0/±45]2 without plug

2×2” [0/±45]4 with plug 2×2” [0/±45]4 without plug

correlated

correlated

predicted

predicted
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ECDM + Shell-beam
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Simulations and Predictions: 2×2” [0/±45] Tubes 
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ECDM + Shell-beam
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Predictions of Other Tube Geometries

31

ECDM + Shell-beam
2×4” [0/±45]24×4” [0/±45]2
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Sensitivity Study

Material properties ±10%

Residual strneghts ±10%



Can we predict the crashworthiness performance 

of composite structures?

• Body panels �

• Primary energy absorbing structures

– Solid progress has been made towards a 

robust crash model. 

– The stability of the simulations is improved by 

• Composite model with proper post-failure response, 

particularly the irreversible strain.

• A shell-beam element method

– The predicted response and morphology are 

close to experiment.

Conclusions and Outlook

33



Conclusions and Outlook

• Further investigations

• Examine more load cases: off-axis angles

• Other composite materials

• Based on a stable framework, further 

developments 

• Failure criteria

• Damage laws

• Damage interaction

• Experimental methods to characterize damage 

parameters. 

• Local microstructure 

• Strain rate

• Including meso-, micro-structure effects

34
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Thank You!
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