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Crashworthiness Prediction of Composite Structures

Can we predict the crashworthiness performance of composite structures?

2014 Corvette C7

carbon-fiber: hood (inner and outer) and Al chassis
roof panel; SMC: quarters, doors, hatch;
carbon nano-composite floor pan.
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Crashworthiness Prediction of Composite Structures

/ Body panels \ / Primary energy absorbing structures \
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Predictions Of Composite Body Panels

Drop Head Force (SAE180)

—— experiment 1 M experiment 1
experiment 2 M experiment 2
—— prediction M Prediction

Peak Force

|~

/!

Drop Head Force

Right hinge Left hinge

Time (ms)

 The modeling method for composite hood was
established in the design of a different vehicle.

 The design, iterations, and material selection
were evaluated by FEA only.

* The predicted response agreed well with a test
conducted later.

» Existing composite models are sufficient to
predict the body panels.

5
Collaboration with John Morley, 2004-05 Xiao, SPE Automotive Composites Conference, 2007




Composite Crashworthiness, What Can
We Predict?

« Body panels v
* Primary energy absorbing structures ¢
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Axial Crush of Tubes

A measure of the specific energy
absorption (SEA) of a material

A benchmark problem to gauge the
capability to model primary energy
absorbing structures

Maximum specific energy

absorption value obtained

from axial compression of
50mm cylinders

1254
D. Hull, 1988
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McGregor et al, Comp A, 2008



Challenge In Modeling Composite Primary
Energy Absorbing Structures

« Extensive failure, resin pulverize, fiber rupture,
delamination...

« Require to model the behavior much beyond the failure
criterion

« Require experimental techniques to characterize the
properties of composites with damage

Kevlar composite

% Photo courtesy: A. Browne

DP steel tube PW carbon composite Braided carbon omposite

Photo courtesy: M.Starbuck
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Composite Material Models In Commercial Codes

Phenomenological models with
homogenized properties

Orthotropic solid

— Brick (solid) element
El, E2, E3, G12, G23, G31, v12, v23, v31

— Shell (plate) E1, E2, G12, v12

Failure criteria

Property degradation beyond failure

Structure » Progressive failure models
» Damage mechanics models

Daniel and Ishai,
Engineering Mechanics of
Composite Materials, 1994. 11
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Continuum Damage Mechanics (CDM) Model
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Axial Crush Of Braided Carbon Composite Tubes

Drop Mass -« g

Braided
Composite =+
Tube

Trigger
Plug Initiator o
Rigid Wall “ = —

« Triaxial braided composite tubes, 0/£30, 0/£45, 0/+60, 1-ply, 2-ply, 4-ply
« The tube front edge with 45°chamfer
« Tested with or without a plug initiator

« Simulation with LS-DYNA, each ply was modeled with one layer of shell
with MATS8. Delamination was modeled with contact tiebreak
13
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Simulation Of Axial Crush Of Braided Carbon Composite
Tubes With MAT58 (MLT model') in LS-DYNA
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Limitations of Continuum Damage Mechanics
Models in Composite Crash Simulations

DeTerasa’s compression experiment, 2001

)

Stress (MPa)

0.02 004 0.06

0.08

Experimental
—MAT58

Strain

Xiao et al, Thin-walled Struc, 2009

CDM model cannot represent the

unloading response of substantially
damaged composites

> Underestimate the total
energy absorption

The stiffness of the damaged
composite modeled by CDM is
much lower than experimental value

» Tendency to instability

ncc
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Modification of MLT model (2007)
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Xiao, ] Composite Materials, 2009.
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Coupled CDM-plasticity model and its

implementation in LS-DYNA

MLT model

loading surface - Hashin failure criteria with
damage evolution
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Coupled model

Plasticity onset at threshold strain
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Xiao, IntJDamage Mechanics, 2010.




A Coupled Damage-Plasticity Model
for Composite Crash Simulations

CARBON0/+30i-30 TUBE CR

BB Classic CDM

CARBON 0/+30/-30 TUBE CR.

||||||E||| Coupled model

z
h ™
50 test 1
test 2
40 — MAT58
.. . 3 coupled
Case 1 1-ply triaxially braided tube under < 30
axial impact S 2o
2
10
0 |
0 20 40 60 80 100 120 140
Xiao, IntJ Damage Mechanics, 2010. 18 Displacement (mm)
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Enhanced Continuum Damage Mechanics Model

A | |
O l«e— Ladeveze _sle Enhanced !

maodel features

« The pre-failure and post-
failure regions are described
by two separate sub-models.

« Aresidual state is defined by
either a residual stiffness or a
P residual strength.

Residualstatel

Strain

|

|

i

|
softening :
|

|

|

Initial damage

:  Implemented as LS-DYNA
> user material model
: : 3
«—— Fre-failure —le F‘ost-fallure9|
Initial Failure Final Failure
Danghe Shi, PhD thesis,
Dec 2015.
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Enhanced Continuum Damage Mechanics Model

X <0

t,c

2
° 1 1 1 > .
Failure criteria Axial direction: (G“j _1{ 0 failure

Transverse direction:
>€ 2 _
! Oy N [ g 1 >0 failure
Y. S <0

« The pre-failure and post-failure regions are described by two
separate sub-models.

0 \_, V\? d=1+(df—1)e;[l[;JmJ

de(0d,) before initial failure

de(d,,]) afterinitial failure
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Enhanced Continuum Damage Mechanics Model

« Residual property

« Element deletion
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ECDM vs. MATS8

Quasi-static coupon testing of a braided composite
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ECDM vs. MATS8

ECDM Experiment

I

-250 -200 -150 -100 -50 ﬂ

—ECDM
—MATS58

—Experiment

More realistic crush front
morphology

Load /KN

Slightly beftter Force-
Displacement responses

Displacement /mm
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A Shell-Beam Modeling Method for Crash Simulation
of Thin-Walled Composite Tubes

Element tvpe  Plate model L V=3m = 2 V=4.8m s 3. V=4 .8m &
=0 34 =0 34 =032

! Shell

* Ashell-beam element
consists of 2 shell
elements and 4 beam
elements.

A composite layer is
represented by a shell-
beam element.

» The shell-beam
element is as stable as
the solid element but
much more efficient.

]

Shi, Xiao, Composite Structures, 2017. -



Evaluation of the ECDM Model

Drop Mass <« g

Braided
Composite =
Tube

Trigger
Plug Initiator
Rigid Wall ™

Triaxial braided composite tubes, [0/ =45] braid architecture, 5 configurations
The crash front edge was machined with 45° chamfer

Tested with or without a plug initiator

Tubes were modeled with four-node fully integrated shell elements

Each ply was modeled with one layer of shell
*CONTACT_AUTOMATIC_ONE_WAY_SURFACE_TO_SURFACE_TIEBREAK

26

VV V V VY
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Simvulations and Predictions: 2x2"” [0/145] Tubes

ECDM + Shell-beam

Correlated Predicted

2 X 2" [0/ *45], with plug

2 X 2" [0/ +45], with plug 2 X 2" [0/x45], without plug
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Simulations 2x2” [0/%£45] Tubes

2 X 2" [0/%45], with plug 2 X 2" [0/ %45], without plug
2x2-4layer - 5Smm 2x2-4layer - 5mm
Time = 0 Time = 0

28



Simvulations and Predictions: 2x2"” [0/%45] Tubes

ECDM + Shell-beam

Force-displacement response
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Simulations and Predictions: 2x2"” [0/%45] Tubes

ECDM + Shell-beam

SEA Average plateau force
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Predictions of Other Tube Geometries

ECDM + Shell-beam
4 X 4” [0/%45], 2X4” [0/£45],

Displacement imm
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== Simulation

~HEH
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Material properties +10%

Sensitivity Study
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Conclusions and Ovutlook

Can we predict the crashworthiness performance
of composite structurese

 Body panels v
* Primary energy absorbing structures

— Solid progress has been made towards a
robust crash model.

— The stability of the simulations is improved by

« Composite model with proper post-failure response,
particularly the irreversible strain.

+ A shell-beam element method

— The predicted response and morphology are
close to experiment.



Conclusions and Ovutlook

* Further investigations

Examine more load cases: off-axis angles
Other composite materials

« Based on a stable framework, further
developments

Failure criteria
Damage laws
Damage interaction

Experimental methods to characterize daomage
parameters.

Local microstructure
Strain rate

 Including meso-, micro-structure effects

34
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