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Thermally Optimizing a High-Power PCB 
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The growth of battery-powered applications is presenting new challenges for designers 

of electronic motor-driven solutions. Targeting higher performance and efficiency, the 

power stages of these products must manage high currents while meeting strict power 

dissipation and size requirements. This white paper illustrates a thermally aware 

workflow with the Cadence® Celsius™ Thermal Solver that was used to optimize the 

STMicroelectronics EVALSTDRIVE101 evaluation board deployed in battery-powered 

electronics. Detailed electrothermal co-simulations using the Celsius Thermal Solver 

during the routing phase enabled the designer to achieve maximum system performance 

in a short timeframe.
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Design Overview
The use of batteries for application power supplies requires lower operating voltage, usually in the range of a few tens of 
volts, because of the limited number of battery cells connected in a series. When applications require high power, above 
hundreds of watts, the management of currents flowing through the motor driving the electronics becomes critical, to ensure 
overall system efficiency and reliability. Indeed, motor currents may exceed tens of amperes in such applications, which leads 
to increased power dissipation inside the inverter module, reducing its efficiency. More power to the electronic components of 
the inverter also results in higher temperatures, which could consequently degrade their performance over time and/or cause 
sudden breaks if going above maximum allowed ratings.

Several electronic components widely used in motor control systems are very sensitive to operating ambient temperature. For 
example, electrolytic capacitors typically used to stabilize the main supply voltage of the inverter are guaranteed by the 
manufacturer for a minimum number of hours without failures if their temperature remains below specific thresholds, but if 
operated above the threshold, a reduction in their average life should be expected.

Consequently, the optimization of thermal performance, in combination with a compact form factor, is a key aspect of the 
inverter design phase that can hide pitfalls if not properly addressed, resulting in underperforming products.

The current density in the PCB is also a critical factor when the current flows between different planes through via holes. 
Overstressing a single via connection due to poor placement could result in a sudden failure during operation, making analysis 
of this issue critical as well. A transitional approach to this problem would typically be the production of a first prototype once 
electrical signoff is completed and a direct check of its thermal performance by on-field validation. The design would then be 
successively refined, and new prototypes evaluated again in an iterative loop that should converge to the optimal result. The 
problem with this approach is that electrical and thermal evaluations are totally separated, and electrotheremal coupling 
effects are never addressed during the PCB design process, resulting in a long iteration time that directly impacts the time to 
market.

A more effective alternative method is to optimize the electro-thermal performance of motor control systems by taking 
advantage of modern simulation technologies. STMicroelectronics, a leading manufacturer of industrial motor control 
integrated circuits (ICs), fine-tuned its EVALSTDRIVE101 evaluation board using the Celsius Thermal Solver, which provided—
in a few minutes—a global and accurate assessment of design performance from both an electrical and thermal perspective. 
This tool dramatically simplified the inverter optimization process and enabled the designers to achieve a compact and 
reliable design in a short timeframe.

High-Power Demonstration Board
The EVALSTDRIVE101, in Figure 1, is a high-power demonstration board designed to drive three-phase brushless motors. It is 
based on the STDRIVE101 three-phase gate driver, and six STL110N10F7 power metal-oxide semiconductor field-effect 
transistors (MOSFETs), arranged into three half bridges. Figure 2 shows the block diagram of the EVALSTDRIVE101.

Figure 1: EVALSTDRIVE101 demonstration board
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The EVALSTDRIVE101 is a four-layer board with 2oz copper, width of 11.4cm, and height of 9cm. Although the board has a 
custom aluminum heatsink for operations up to 20Arms, this document addresses operations without a heatsink. In this case, 
a maximum power of roughly 1kW can be delivered to the load with 15Arms output current and supply voltage of 75V. The 
following the maximum current rating was considered but the supply voltage was scaled down to 36V to better fit with 
battery-powered scenarios.

From a thermal perspective, the most critical part of the EVALSTDRIVE101 is the power stage area, which mainly includes 
power MOSFETs, shunt resistors, ceramic bypass capacitors, electrolytic bulk capacitors, and connectors. The layout of this 
part of the board, seen in Figures 3–6, covers roughly half of the overall PCB size, i.e., 50cm2. Special care was taken in the 
placement and routing of the MOSFETs, as these components are responsible for most of the power losses during inverter 
operations. The MOSFET drain terminal corresponds to the exposed pad of the package and provides the main link to the 
silicon substrate for heat dissipation. Consequently, the PCB copper area of all drain terminals was maximized on the top layer 
(as evident in Figure 3) focusing on the input net virtual machine (VM) bus and the three output nets (OUTU, OUTV, and 
OUTW). Copper areas of the VM and outputs available on the top layer were replicated and enlarged where possible for other 
layers to improve heat transmission toward the bottom board surface (Figures 4–6). In this way, both top and bottom surfaces 
of the board effectively contribute to heat dissipation by natural convection and radiation. The electrothermal connections 
between different layers are provided by vias of 0.5mm diameter that facilitate air flow and improve PCB cooling. The grid of 
vias was located right below the MOSFETs’ exposed pads, but its diameter was reduced to 0.3mm to prevent solder paste 
reflows in the holes.
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Figure 2: EVALSTDRIVE101 basic block diagram

Figure 4: EVALSTDRIVE101 first inner-layer PCBFigure 3: EVALSTDRIVE101 top-layer PCB
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In addition to the thermal perspective, the PCB routing also optimizes electrical performance. The lower panel of Figure 7 
shows a placement detail of one half bridge; the MOSFETs, shunt resistors, and ceramic capacitors were placed close to each 
other to minimize current loops and were connected by large top traces to reduce inductive and resistive components 
positively affecting the radiated emission and noise level. The same reduction of parasitics was implemented for connections 
between STDRIVE101 gate driver and MOSFETs using incremented width of 0.7mm and two vias for each crossing of layers. 
This, together with a tuned polarization network of MOSFET gates made by a 33Ω resistor in parallel with a Schottky diode 
(shown in the upper panel of Figure 7) also allowed the designer to control the induced turn on effects and obtain the best 
motor control.

Celsius Thermal Solver Simulations
The Celsius Thermal Solver is the first complete electrothermal co-simulation solution for the full hierarchy of electronic 
systems from ICs to physical enclosures. Based on a production-proven, massively parallel architecture that delivers up to 10 
times faster performance than legacy solutions without sacrificing accuracy, the Celsius Thermal Solver integrates with 
Cadence IC, package, and PCB implementation platforms. This enables new system analysis and design insights and 
empowers electrical design teams to detect and mitigate thermal issues early in the design process reducing electronic 
system development time.

By combining finite element analysis (FEA) for solid structures with computational fluid dynamics (CFD) for fluids, the Celsius 
Thermal Solver enables complete system analysis in a single tool. When using the Celsius Thermal Solver for PCB and IC 

Figure 6: EVALSTDRIVE101 bottom-layer PCBFigure 5: EVALSTDRIVE101 second inner-layer PCB
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Figure 7: Schematic of one-half bridge in the EVALSTDRIVE101 and associated layout pattern
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packaging, engineering teams can combine electrical and thermal analysis and simulate the flow of both current and heat for 
a more accurate system-level thermal simulation than legacy tools. In addition, the tool performs both static (steady-state) 
and dynamic (transient) electrothermal co-simulations based on the actual flow of electrical power in advanced 3D struc-
tures, providing visibility into real-world system behavior.

In addition to the heat generated locally around and underneath certain components at the PCB or IC package level due to 
component power consumption, the Celsius Thermal Solver can calculate the heat generated by the Joule effect due to the 
high currents flowing through the copper from the voltage regulator to the sinks. Local increase of the current density at the 
PCB package level will also introduce a local increase of the temperature (local hotspots). This makes it ideal for applications 
such as DC/DC converter PCB designs, switch mode power supply (SMPS) PCB designs, motor controlling applications, and 
any automotive and industrial types of applications dealing with high currents.

The Celsius Thermal Solver empowers electronics design teams to analyze thermal issues early and share ownership of 
thermal analysis, which reduces design respins, and enables new analysis and design insights not possible with legacy 
solutions. In addition, the tool accurately simulates large systems with detailed granularity for any object of interest and is the 
first solution capable of modeling structures as small as the IC and its power distribution, together with structures as large as 
the chassis.

The tool allows designers to directly import PCB and IC package layout files (.brd, .mcm, .sip, odb++ formats), even in draft 
versions. For example, a board such as the EVALSTDRIVE101, which consists of digital, analog, and power subdomains, can be 
optimized in the inverter section, even if the other parts are not yet defined. This feature allows obtaining immediate feedback 
when designing the PCB; therefore, it is possible to refine the layout step by step if critical issues are highlighted by simula-
tions. This workflow was adopted to obtain the production-ready version of EVALSTDRIVE101 and involved iterative work 
mainly of changes in component placements, refinement of traces shapes, and inclusion/removal of vias.

Manufacturing Modifications

The Celsius Thermal Solver allows the designer to view and modify manufacturing parameters related to the PCB stackup and 
via characteristics such as plating, thickness, and filler. As Figure 8 shows, the EVALSTDRIVE101 has an overall PCB thickness 
of 1.58mm and consists of four copper layers that were optimized at 70µm (2oz/ft2). Copper thickness affects not only the 
electrical resistance of PCB traces, as explained in the previous section, but also their thermal resistance. A cross-section 
area of the traces can be increased with greater copper thickness to dissipate less power for the Joule effect, and to reduce 
thermal resistance and enable better heat spreading. However, copper thickness requires a tradeoff between performance 
versus PCB production cost and its minimization is deemed necessary.

The stackup settings allow to take into account production tolerances, usually 20% of nominal values, and simulate both in 
typical and worst-case condition to make the design even more robust. The physical properties of specified materials are 
automatically provided through the embedded library and their values are adapted according to operating conditions. Copper 
resistivity, for example, is increased with temperature to obtain better simulation results.

Electrical Analysis

Critical points in the current flow that could produce board overstress can be identified. The Celsius Thermal Solver allows 
designers to perform simulations that also include an electrical analysis of the system that provides current densities in 
traces and vias, as well as voltage drops. Such simulations require designers to define the PCB’s current loops of interest 
using a circuit model for the system, made of current sinks, voltage sources, and resistances.

Figure 8:  EVALSTDRIVE101 stackup
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Current paths are not immediately defined for the inverter, as these depend on the operating condition of the three half 
bridges. A full description of system behavior should include current exchange through the high-side or low-side MOSFET 
within one PWM cycle and account for realistic motor driving by amplitude modulation over time. However, it would be overde-
tailed and of little use for a simulation that is intended to address longer time-scale phenomena. Figure 9 proposes a more 
convenient representation for each half bridge. It consists simply of two constant current generators placed between the 
output and power supply connectors and three short circuits modeling the MOSFETs and shunt resistor. The two current 
loops provide good fitting with real case average currents throughout the supply rail and ground plain while the output path 
current is slightly oversized, a convenient operating condition for evaluating design robustness..

Figures 10 and 11 show the voltage drops and current density of the EVALSTDRIVE101 with IL of 15A. Voltage drops simulated 
with the Celsius Thermal Solver with respect to ground reference highlight a particularly optimized layout with an absence of 
bottlenecks and well-balanced outputs at 28 mV, 25 mV, and 23 mV for U, V, and W. Output U shows the highest voltage drop 
while output W, the lowest of the three, which is an expected result, considering the relative path lengths from the power 
connector.

The Celsius Thermal Solver analysis of current distributions also confirmed the board’s targeted performance (Figure 13). The 
currents are well distributed in the various paths and have an average density below 15A/mm2, which is the recommended 
value for power traces sizing. Some red areas are highlighted in the proximity of the MOSFETs, the shunt resistors, and the 
connectors. These represent a higher current density, as the components’ terminals are smaller than the underlying power 
traces. However, the maximum current density is far below the limit of 50A/mm2, which could realistically lead to reliability 
issues [1].
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Figure 10: Voltage drops resulting from DC current loops
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Thermal Analysis

The Celsius Thermal Solver enables designers to set up and run steady-state or transient simulations. The former provides a 
single 2D temperature map for layers and components, while the latter provides maps for each simulated time instant and 
warmup curves at a cost of longer simulation time. Settings needed for steady-state simulation can be applied to a transient 
simulation; however, this additionally requires a definition of power dissipation functions for the components. Transient 
simulations are suitable when defining different operating states for the system with power sources not simultaneously active 
and also to assess the time needed to reach steady-state temperature. Simulations were done at an ambient temperature of 
28°C with the heat transfer coefficient as boundary conditions and two-resistors thermal model for devices. These models 
were used instead of detailed thermal models such as Delphi, as they were directly available in the components’ datasheets, 
although slightly sacrificing simulation accuracy [2]. The power loss of the inverter was estimated by simplified formulae 
considering the contribution of shunt resistors and power MOSFTEs due to conduction, switching, and the diode’s drop.

Figure 12 provides the steady state results of the Celsius Thermal Solver for the EVALSTDRIVE101 and Figure 13 presents the 
transient simulation results. Step power functions are used in transient simulation to enable all the MOSEFTs and the shunt 
resistor at time zero.

Figure 12: Result showing steady-state PCB simulated top layer temperature map

Figure 11: Current density resulting from DC current loops
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From the Celsius Thermal Solver simulation results, the Q1 MOSFET was the hot spot on the board, at 94.06°C. Other compo-
nents such as the Q4 MOSFET at R24 and R23 had a temperature of 93.99°C, 85.34°C, and 85.58°C, respectively.

Thermal Characterization: Simulation vs. Measured Data
For the thermal performance evaluation of the EVALSTDRIVE101 board, a setup was used consisting of three coils wired in a 
star configuration, namely, a three-phase load that emulates the motor. Each coil must have a saturation current compatible 
with the board rating, but the inductance or its parasitic resistance value need not be equivalent to that of the emulated 
motor. Indeed, it is more advantageous to have low parasitic resistance value for the coils, to considerably reduce the active 
power that would lead to unnecessary Joule effect heating inside the coils and obtain a lossless reactive power transfer 
between the board and the load, and vice versa.

By applying three sinusoidal voltages that are out of phase by 120° to each other to the three terminals of the load, the three 
sinusoidal currents flow in the load. The three sinusoidal outputs are generated by modulating the PWM duty cycle around 
50% mean value, as sinusoidal PWM modulation.

Equation 1 shows the peak amplitude of the current obtained.

Equation 1:

I=V/√(2πfL)2+R2 )

	f V is the peak amplitude of sinusoidal voltage applied to the load

	f f is the frequency of sinusoidal voltage

	f L is the inductance of one coil

	f R is the resistance of one coil

Figure 13: Result showing component warmup of the U half-bridge simulated thermal transient curve
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With this method, the power stage works in an operating condition very close to the final motor driving application. 
Furthermore, the load current is stable and easy to configure by simply varying the frequency and applied voltage amplitude 
conversely to the motor driving, which needs appropriate closed-loop control algorithms.

Figure 15 shows the physical setup used for the thermal characterization of the EVALSTDRIVE101.

The device was connected to a control board to generate the necessary driving signals and placed inside a plexiglass box to 
obtain system cooling by convection, without accidental air flow. Above the box is one thermal imaging camera, which frames 
the board through a hole in the cover of the box.

A three-phase load with inductance of 300µH and resistance of 25mΩ for each coil is connected to the board outputs, as 
previously described, and 36V is supplied to the system. Figure 16 shows the output current of 15Arms obtained by applying 
three out-of-phase sinusoids with a frequency of 100Hz. The PWM applied by the half-bridges has a frequency of 20kHz and 
a dead time of 500ns.

Thermal Imaging Camera

Plexiglass Box

Three-phase Load

EVALSTDRIVE101

Figure 15: Setup for the thermal characterization of the board
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Figure 16: Output currents of the three phases using an SV-PWM modulation
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Power Loss Measurement

One factor affecting the quality of the simulation results is certainly the data accuracy of the power dissipated by each device 
on the power stage. Measurement was made on the board, as described below, to evaluate the error in quantifying the dissi-
pated power.

As the power dissipated by the board is the difference between the input power and the power delivered to the output load, it 
can be calculated as shown in Equation 2.

Equation 2:

	f Vin is the input voltage of the board

	f Iin is the input current

	f Vi-Vc is the voltage drop on each coil, i.e. the difference between voltages of i-th output and center tap of the load

	f Ii is the current flowing through the i-th coil

The measurement was made using an oscilloscope and applying the proper math functions to the waveforms: first the point-
by-point product of the voltage and current was computed, then the power was averaged over an integer number of sinusoid 
cycles. Table 1 shows the measurement results at ambient temperature and at hot when the power stage reached the steady 
state condition. It also provides the overall value of power dissipated by the board estimated by formulae.

Table 1: Measured vs. Estimated Power Losses

The results show very good matching between measurements and estimates, which is in line with introduced approximations. 
The formulae overestimates the measurement at room temperature by 1.5%, which provides roughly a 3.9% underestimate 
compared with hot condition data. This result is in line with the variability associated with the on-resistance of the MOSFETs 
and shunt resistors, as nominal values were used in the computations.
As expected, all power values were higher at hot than at room temperature, due to the increase in the resistances of the coils 
and MOSFETs with temperature. The data also shows a difference among the measured powers for the three outputs. This 
effect is due to the unbalancing of the three-phase load, because of slightly different values of L and R from coil to coil. This 
effect plays a marginal role, as the misalignment is lower than the one between the measurements and the estimate.

Temperature Results

The sinusoids generation and acquisition by the thermal imaging camera were simultaneously activated. The thermal imaging 
camera was previously configured to collect thermal images every 15 seconds and to include in every capture three 
temperature markers for components Q1, Q4, and R23, respectively, the high-side MOSFET, low-side MOSFET, and shunt 
resistor of the U half-bridge.

The system remained active until the steady-state condition was reached after about 25 minutes. The ambient temperature 
detected inside the box at the end of the test was about 28°C. Figure 17 shows the heating transient of the board that was 
derived from temperature markers and Figure 18 shows the final temperatures on the board.

Power Measure @ Tamb Measure @ Thot Estimate

Pin 27.51 28.39 -

Pout^U 5.6 5.7 -

Pout^V 6.5 6.6 -

Pout^W 6.1 6.2 -

Ploss= Pin-(PU
out+PV

out+PW
out) 9.36 9.89 9.5
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The measurement showed that Q1 MOSFET was the hottest component of the entire board with a temperature of 93.8°C, 
while the Q4 MOSFET and R23 resistor reached 91.7°C and 82.6°C, respectively.

As discussed in the previous section, the Celsius Thermal Solver simulated the Q1 MOSFET temperature at 94.06°C, the Q4 
MOSFET temperature at 93.99°C, and the R23 temperature at 85.58°C, giving very good matching with measurements.

Figure 17: Measured thermal transient curve - EVALSTDRIVE101 warmup at 15Arms

Figure 18: Thermal measurement - EVALSTDRIVE101 steady-state thermal image
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Conclusion
STMicroelectronics recently released the EVALSTDRIVE101 evaluation board for use in high power and low voltage three-
phase brushless motors for battery-powered applications. The board includes a compact power stage of only 50 cm2, which 
can deliver over 1kW power and 15Arms current to the motor without heatsink or additional cooling.

Using different simulation features within Celsius Thermal Solver, it was possible not only to predict the temperature profile of 
the board and its hot spots on power stage components, but also to have a detailed description of voltage drops and current 
density along power traces, which could be problematic or not feasible at all to obtain by experimental measurements.

Celsius simulation outputs enabled fast optimization of the PCB layout, placement adjustments, and layout weakness correc-
tions from early in the design to signoff. A thermal characterization with an infrared camera showed good agreement between 
simulated and measured steady state temperatures, as well as the transient temperature profile, validating outstanding 
performance of the board and effectiveness of the Celsius Thermal Solver in helping designers reduce design margin and 
achieve quick time to market.
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