

February 28th, 2008

February 28th, 2008 8am PST (Los Angeles) / 11am EST (New York) / 4pm GMT (London)

- Welcome & Introduction (Overview of NAFEMS Activities)
 - Matthew Ladzinski, NAFEMS North America
- A Common Sense Approach to Stress Analysis and Finite Element Modeling
 - Bob Johnson BSc MSc NRA MIMechE CEng, DAMT Limited
- Q&A Session
 - Panel
- Closing

Ladzinski

Johnson

THE INTERNATIONAL ASSOCIATION FOR THE ENGINEERING ANALYSIS COMMUNITY

An Overview of NAFEMS NA Activities

Matthew Ladzinski NAFEMS North American Representative

Planned Activities in North America

> Webinars

- New topic each month!
 - AUTOSIM Update
 - Applied Element Methods
 - Managing FEA in the Design Process
- Recent webinars:
 - The Interfacing of FEA with Pressure Vessel Design Codes (CCOPPS Project)
 - Multiphysics Simulation using Directly Coupled-Field Element Technology
 - Methods and Technology for the Analysis of Composite Materials
 - Simulation Process Management
 - Simulation-supported Decision Making (Stochastics)
 - Simulation Driven Design (SDD) Findings

To register for upcoming webinars, or to view a past webinar, please visit: www.nafems.org/events/webinars

Planned Activities in North America

> Events

- Practical Stress Analysis & Finite Element Methods with Bob Johnson
 - An opportunity to ensure that your organization gets maximum benefit from using FEA
 - Three-day Training Course
 - April 30th − May 2nd, 2008 in Troy, MI
 - Only a few open seats are still available
 - www.nafems.org/events

Planned Activities in North America

NAFEMS NA 2008 Regional Summit

NAFEMS 2020 Vision of Engineering Analysis and Simulation

- NAFEMS 2020 will bring together the leading visionaries, developers, and practitioners of CAErelated technologies and business processes
- Goal: Provide attendees with the best "food for thought and action" to deploy CAE over the next several years
- Location: Embassy Suites Hotel & Convention Center, Hampton, Virginia
- Date: October 29-31, 2008

Call for Papers Now Open!

For more information, visit:

www.nafems.org/nafems2020

Other NAFEMS Activities

- ➤ NAFEMS Simulation Data Management Working Group (SDMWG) name tbd
 - > www.nafems.org/tech/sdmwg
- > NAFEMS NA eNews Update
 - Monthly newsletter containing information on upcoming NAFEMS NA activities
 - Can be downloaded at: www.nafems.org/regional/north_america/enews
- Email from NAFEMS

A NAFEMS Webinar organised by Matthew Ladzinski of NAFEMS Limited (North America).

Matthew.Ladzinski@NAFEMS.Org

Presented by Bob Johnson BSc MSc NRA MIMechE CEng DAMT Limited, UK

bj@damt.co.uk

Aims:

- Achieve a modern-day balance between hand calcs and FEA
- Provide a number of "must-have" formulas for stress analysis
- Provide a summary of the technique of Free-Body Diagrams
- Practical advice for best use of FEA for realistic solutions
- Constraints that gives minimal support & worst-case stresses

CONTENTS:

- **INTRODUCTION**
- •PLANET EARTH
- •FORCES and MOMENTS
- •TYPES OF STRESS
- •PRINCIPAL STRESSES
- •FREE-BODY DIAGRAMS
- •KARABINER FEA (Open Gate)
- **•DETERMINATE ONNDETERMINATE?**
- KARABINER FEA (Closed Gate)
- •MINIMAL CONSTRAINT METHODS IN FEA
- **•QUESTIONS** and CLOSE

CONTENTS:

•INTRODUCTION

- •PLANET EARTH
- FORCES and MOMENTS
- •TYPES OF STRESS
- •PRINCIPAL STRESSES
- •FREE-BODY DIAGRAMS
- •KARABINER FEA (Open Gate)
- **•DETERMINATE or INDETERMINATE?**
- •KARABINER FEA (Closed Gate)
- •MINIMAL CONSTRAINT METHODS IN FEA
- **•QUESTIONS** and CLOSE

INTRODUCTION:

INTRODUCTION:

CONTENTS:

- •INTRODUCTION
- •PLANET EARTH
- FORCES and MOMENTS
- •TYPES OF STRESS
- •PRINCIPAL STRESSES
- •FREE-BODY DIAGRAMS
- •KARABINER FEA (Open Gate)
- **•DETERMINATE or INDETERMINATE?**
- •KARABINER FEA (Closed Gate)
- •MINIMAL CONSTRAINT METHODS IN FEA
- **•QUESTIONS** and CLOSE

PLANET EARTH:

Polar Radius = 6356.8km

Equatorial Radius = 6378.2km

Mean Radius = 6371.0km (3960miles)

Surface Area $= 5.101E14 \text{ m}^2$

Volume = $1.083E21 \text{ m}^3$

Mass = 5.977E24 kg

Mean Density = 5517 kg/m^3

Gravity at Surface = $9.80665 \text{ m/s}^2 \text{ (standard } 45 \text{deg)}$

Rotational speed = 465 m/s (at the equator)

Sun orbit velocity = 29,780 m/s (mean speed)

Inclination = 23 27 (equator to ecliptic)

Greatest Height = 8847.7m (29,028ft) Mt Everest

Greatest Depth = 11,033m (35,960ft) Marianas Trench

Land Area = $148.8E6 \text{ km}^2 (5.747E7 \text{ miles}^2)$

Ocean Area = $361.3E6 \text{ km}^2 (13.95E7 \text{ miles}^2)$

One metre $0.25 \times (2 \times \text{pi} \times 6,371,000) = 1.00075 \text{m}$ defined as 10,000,000 1/10,000,000th of this distance* **Composition of Atmosphere (by vol)** N₂ 78.09% O, 20.95%

Ar 0.93%

CO, 0.03%

*One metre defined as 1,650,763.73 wavelengths of the krypton-86 atom

DIMENSIONAL

S.I. UNITS

U.S. UNITS

QUANTITY	SYMBOL
Mass	M
Length	L
Time	T

Force

	UNIT	SYMBOL
	kilogram	kg
Base J Units	metre	m
	second	S
	newton	N

	UNIT	SYMBOL
	slug	<u>-</u>
	foot	ft
Base Units	second	sec
Onus	pound	lb

An absolute system because the measurement of the base quantity mass is independent of it's environment

A gravitational system because the <u>base</u> <u>quantity force</u> is the weight acting on a standard mass (at sea level and 45deg latitude)

QUANTITY	LINEAR	ANGULAR
Time	t	t
Distance	X	θ
Velocity	X	ė
Acceleration	Χ̈́	ë
Inertia	M	l (ΣMr²)
"Effort"	F = M X	T = I 0
Momentum	Μẋ	ΙĠ
Kinetic Energy	½ M ẋ ²	½ I 0 ²

CONTENTS:

- INTRODUCTION
- •PLANET EARTH
- •FORCES and MOMENTS
- •TYPES OF STRESS
- •PRINCIPAL STRESSES
- •FREE-BODY DIAGRAMS
- •KARABINER FEA (Open Gate)
- **•DETERMINATE or INDETERMINATE?**
- •KARABINER FEA (Closed Gate)
- •MINIMAL CONSTRAINT METHODS IN FEA
- **•QUESTIONS** and CLOSE

FORCES and MOMENTS:

FORCES and MOMENTS:

FORCES and MOMENTS: DEFINITION OF A FORCE: MAGNITUDE ii) **DIRECTION** iii) **POINT OF APPLICATION** 7kN 7kN TX RX RZ

FORCES and MOMENTS:

FORCES

$$\sum \mathbf{F} \mathbf{x} = \mathbf{0}$$

$$\sum Fy=0$$

$$\sum Fz=0$$

MOMENTS

$$\sum Mx=0$$

$$\sum My=0$$

$$\sum Mz=0$$

TX TY

TZ

RX

RY

RZ

FORCES and MOMENTS:

TX TY TZ RX RY RZ

ROSHAZ

FORCES and MOMENTS:

CONTENTS:

- INTRODUCTION
- PLANET EARTH
- FORCES and MOMENTS
- •TYPES OF STRESS
- •PRINCIPAL STRESSES
- •FREE-BODY DIAGRAMS
- •KARABINER FEA (Open Gate)
- **•DETERMINATE or INDETERMINATE?**
- KARABINER FEA (Closed Gate)
- **•MINIMAL CONSTRAINT METHODS IN FEA**
- **•QUESTIONS** and CLOSE

TYPES of STRESS:

TYPES of STRESS:

TYPES of STRESS:

Tension POSITIVE

Compression

Shear/Torsion

Bending

$$\sigma = F$$

$$\sigma = F$$

$$\sigma_{av} = \frac{\mathbf{Q}}{\mathbf{A}}$$

TYPES of STRESS:

TYPES of STRESS:

TYPES of STRESS:

Tension

Compression

$$\sigma = F_{\Delta}$$

Shear/Torsion

$$\sigma_{av} = \frac{\mathbf{Q}}{\mathbf{A}}$$

SLIDE - 43 -

7kN

7kN

$$\sigma = \frac{My}{I}$$

CONTENTS:

- INTRODUCTION
- PLANET EARTH
- FORCES and MOMENTS
- •TYPES OF STRESS
- •PRINCIPAL STRESSES
- •FREE-BODY DIAGRAMS
- •KARABINER FEA (Open Gate)
- **•DETERMINATE or INDETERMINATE?**
- •KARABINER FEA (Closed Gate)
- •MINIMAL CONSTRAINT METHODS IN FEA
- **•QUESTIONS** and CLOSE

PRINCIPAL STRESSES:

PRINCIPAL STRESSES:

PRINCIPAL STRESSES:

CONTENTS:

- INTRODUCTION
- •PLANET EARTH
- FORCES and MOMENTS
- •TYPES OF STRESS
- •PRINCIPAL STRESSES
- •FREE-BODY DIAGRAMS
- •KARABINER FEA (Open Gate)
- **•DETERMINATE or INDETERMINATE?**
- •KARABINER FEA (Closed Gate)
- •MINIMAL CONSTRAINT METHODS IN FEA
- **•QUESTIONS** and CLOSE

FREE-BODY DIAGRAMS:

FREE-BODY DIAGRAMS:

LOG in X direction:

$$\frac{M\ddot{x}}{2} = 2T - 1962 \sin(30) - 849.5 \dots > \dots \frac{M\ddot{x}}{4} = T - 490.5 - 424.75$$

$$\frac{M\ddot{x}}{4} = T - 490.5 - 424.75$$

CONTENTS:

- INTRODUCTION
- •PLANET EARTH
- •FORCES and MOMENTS
- •TYPES OF STRESS
- •PRINCIPAL STRESSES
- •FREE-BODY DIAGRAMS
- •KARABINER FEA (Open Gate)
- **•DETERMINATE or INDETERMINATE?**
- •KARABINER FEA (Closed Gate)
- •MINIMAL CONSTRAINT METHODS IN FEA
- **•QUESTIONS** and CLOSE

KARABINER FEA (open gate):

KARABINER FEA (open gate):

2 2 //

CONTENTS:

- INTRODUCTION
- •PLANET EARTH
- FORCES and MOMENTS
- •TYPES OF STRESS
- •PRINCIPAL STRESSES
- •FREE-BODY DIAGRAMS
- •EXAMPLE: KARABINER (Open Gate)
- •DETERMINATE or INDETERMINATE?
- •EXAMPLE: KARABINER (Closed Gate)
- •MINIMAL CONSTRAINT METHODS IN FEA
- **•QUESTIONS** and CLOSE

DETERMINATE or INDETERMINATE?

DETERMINATE or INDETERMINATE?

von Mises stress

Cartesian XX stress

ROSHAZ

CONTENTS:

- INTRODUCTION
- •PLANET EARTH
- FORCES and MOMENTS
- •TYPES OF STRESS
- •PRINCIPAL STRESSES
- •FREE-BODY DIAGRAMS
- •KARABINER FEA (Open Gate)
- **•DETERMINATE or INDETERMINATE?**
- •KARABINER FEA (Closed Gate)
- •MINIMAL CONSTRAINT METHODS IN FEA
- **•QUESTIONS** and CLOSE

KARABINER FEA: (closed-gate)

KARABINER FEA: (closed-gate)

KARABINER FEA: (closed-gate)

CONTENTS:

- INTRODUCTION
- PLANET EARTH
- FORCES and MOMENTS
- •TYPES OF STRESS
- •PRINCIPAL STRESSES
- •FREE-BODY DIAGRAMS
- •EXAMPLE: KARABINER (Open Gate)
- **•DETERMINATE or INDETERMINATE?**
- •EXAMPLE: KARABINER (Closed Gate)
- **•MINIMAL CONSTRAINT METHODS IN FEA**
- **•QUESTIONS** and CLOSE

Balanced Loading and Minimum Constraint in 3D - Crank

Balanced Loading and Minimum Constraint in 3D - Full model of Karabiner

Balanced Loading and Minimum Constraint in 3D - Half model of Karabiner

ROSHAZ

No Symmetry	1 plane of symmetry	2 planes of symmetry	3 planes of symmetry
Balanced	Balanced	Balanced	Balanced
Loading	Loading	Loading	Loading
3-2-1	3-2-1 (2D Plane Stress/Strain)	3-2-1 (2D Axi-symmetric)	3-2-1
6 global	3 global	1 global	0 global
freedoms	freedoms	freedom	freedoms

Aims:

- Achieve a modern-day balance between hand calcs and FEA
- •Provide a number of "must-have" formulas for stress analysis
- Provide a summary of the technique of Free-Body Diagrams
- Practical advice for best use of FEA for realistic solutions
- Constraints that gives minimal support & worst-case stresses

A NAFEMS Webinar organised by Matthew Ladzinski of NAFEMS Limited (North America).

Matthew.Ladzinski@NAFEMS.Org

Presented by Bob Johnson BSc MSc NRA MIMechE CEng DAMT Limited, UK

bj@damt.co.uk

THE INTERNATIONAL ASSOCIATION FOR THE ENGINEERING ANALYSIS COMMUNITY

Q&A Session

Using the Q&A tool, please submit any questions you may have for our panel.

THE INTERNATIONAL ASSOCIATION FOR THE ENGINEERING ANALYSIS COMMUNITY

Thank you!

matthew.ladzinski@nafems.org

