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CUTTING-EDGE
METHODS FOR
CHALLENGING
PROBLEMS

FE is a well-established technology with a huge range
of applications, but “vanilla” FE struggles to solve
some classes of problem. Two common classes of
problem that are challenging for standard FE are
problems involving discontinuities and singularities,
such as crack propagation and behaviour at material
interfaces, and problems involving large deformations,
such as moulding and shaping simulations.

For both classes of problem, careful mesh handling can
improve the chances of solving successfully. For
instance, the stress singularity at a crack tip can be
well-approximated by using second-order elements and
shifting the midpoints to be quarter points, and large
deformation problems can be approached by stopping
the run and remeshing when deformation becomes
problematic or by designing an initially deformed mesh
that improves with deformation. However, mesh
handling is generally time-consuming and requires user
expertise. Additionally, there are some problems that
mesh handling cannot address. For instance, crack
propagation simulation in standard FE restricts the
crack growth to a pre-defined path along the element
faces, so that only problems where the crack shape is
already known can be solved.

Research into methods for solution of challenging
problems such as these has developed a range of
numerical approaches, and some of the most effective
methods have recently been introduced to
commercially-available packages. This article discusses
how these new methods differ from standard FE,
discusses a few of the most established methods, and
shows examples of their application to real problems.




What's Different?

We are all familiar with the ideas that underpin FE.
An FE model solves a partial differential equation
(usually one that defines a physical problem) for
some unknown guantity of interest (e.g.
displacement, temperature, etc.) by using local
numerical approximations defined on a mesh.

The mesh consists of a set of nodes, each of which
has one associated basis function, and a set of
elements that define how the nodes are linked
together. The basis functions, commonly low-order
polynomials, are defined on the elements such that
the basis function associated with a given node is
non-zero only on the elements of which the node is a
member. The approximate solution over the whole
domain is then written as a weighted sum of the
basis functions, where the weights are the values of
the unknown quantity at the nodes.

The approximate solution is put into the partial
differential equation (PDE) and the associated
boundary conditions, which generates a set of
simultaneous equations that are solved to obtain
the values of the unknown quantity at the nodes,
and hence the value of the unknown quantity at any
point in the domain.

The new methods typically differ in one of two ways:
either they extend the allowable basis functions, or
they dispense with the rigid connectivity between
nodes that a mesh imposes. Other than these
differences, their overall approach is typically similar
to that of standard FE. The similarity means that in
some cases software routines required for standard
FE, such as quadrature routines and routines for
solution of simultaneous equations, can also be
used, with some adaptations, for solving problems
formulated using the new methods.

Enriched finite element methods: XFEM

Methods that extend the allowable basis functions
are sometimes known as enriched FE methods or
partition of unity methods. Examples include the
extended FE method (XFEM), which allows multiple
basis functions at a node and will be discussed in
more detail below, and hp-adaptive FE, which can
associate basis functions with edges, faces, and
elements as well as with nodes. The overall
approximate solution is still expressed as a weighted
sum of the basis functions, but the weights cannot
always be associated directly with the value of the
unknown quantity at a node.

Enrichment methods are of particular use for
problems that have a local feature, with at least
approximately understood behaviour, that is of
particular importance or interest. A key example is
crack propagation. The displacement across a crack
and close to the crack tip are comparatively well
understood: the displacement across a crack is
discontinuous, and the stresses and strains around
a crack tip have an r~ {-1/2} singularity for a linear
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elastic material. The addition of basis functions that
capture this behaviour in the region where the crack
is expected to go allows the behaviour to be
modelled accurately without mesh refinement.

Each additional basis function has an associated
unknown value to be determined by the model, and
leads to an additional computational cost incurred by
its contributions to the simultaneous equations.
However, the extra cost can be minimised by only
adding extra functions in the regions that are likely
to require enrichment, and in many cases the mesh
required for a good solution to be obtained using an
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enriched method will be coarser than the mesh
required for an equivalent quality solution using
standard FE, meaning that the increase in
computational cost can be offset by using a less
refined mesh.

The main enriched method that is seeing an increase
in use is XFEM. The development of the method has
largely been driven by its suitability for simulation of
crack propagation and stress intensity factors, a
problem of great importance across a wide range of
industries, but other problems also benefit from its
local enrichment approach. When applied to crack
propagation problems, the XFEM introduces two
extra sets of functions in addition to the standard
FE nodal basis functions: a step function H(x) to
capture the discontinuity in displacement across a
crack, and a set of functions Filx), typically
expressed in polar coordinates centred on the crack
tip, that capture the stress singularity in that
region. The extra basis functions are defined as the
product of these enrichment functions with the
standard nodal basis function in order to ensure
that the basis functions remain mesh-based and
local to the enriched nodes.

The figure above shows the model mesh and the
Mises stress in a pressure vessel for a crack
initiated in the nozzle where pressure penetration
acts on the crack surface. In this case the analysis
was allowed to run for 100 increments to allow the
crack to extend to the flange. Comparing the mesh
and the results shows that the crack does not
follow mesh lines, and that the stress and
displacement (shown as deformation) are
discontinuous across the crack.

Another class of methods that alters the range of
basis functions is isogeometric analysis methods.
These methods preserve the links between CAD
models parameterised by B-splines or NURBS and
the model results by using the same three-variable
space to parameterise the splines and the FE basis
functions, and using tensor products of univariate
splines as basis functions. These methods are
particularly useful for applications such as contact
problems and simulation of turbine blades where the
approximation introduced by imposition of a standard
FE mesh on the geometry can lead to the loss of
important properties such as smoothness or other
key geometric details. An additional benefit is that
the continuity properties of splines can lead to a
reduction in the number of unknown parameters
required to obtain a converged result. The main
disadvantages of this class of methods are that
refinement is challenging, and that creation of a
suitable spline or NURBS discretisation via patching
can be difficult for problems with complicated
topology.

Mesh-free methods

Mesh-free methods, as the name suggests, do not
use a mesh to define nodal connectivity. Instead, the
basis function associated with a given node is
defined in terms of a set of (possibly scaled)
coordinates centred on that node. The function is
typically defined to be non-zero over some region,
sometimes called the “domain of influence”,
surrounding the node. A simple choice of domain of
influence with potentially useful symmetry properties
is a circular region. The basis functions can be
chosen to have smoothness properties suitable for
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the problem of interest, and can have zero gradient
on the edge of the region so that continuity of
derivatives is also achieved. Any two nodes whose
domains of influence overlap will be linked by one or
more of the simultaneous equations.

The linking between nodes can be updated as the
solution progresses, ensuring that nodes that are
close to one another are linked in the simultaneous
equations. Whilst the recalculation of the nodal
separations and associated matrix is an additional
computational expense, it is usually cheaper than
stopping the calculation, extracting the deformed
geometry, and remeshing. Atomistic models have
to take atomic separations into account for similar
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be used to track and update nodal connections. Brick Masonry Tower
A wide range of meshless methods have been
developed. The methods differ in their choice of
basis function, in the form of the PDE they use to
generate the simultaneous equations, and in their
stability and smoothness properties. The oldest,
and probably the most widely-used, meshless
method is smoothed particle hydrodynamics (SPH),
but other methods such as the element-free
Galerkin method and the material point method are
also used.

A related method that has been used in practical
applications in the finite/discrete element method
(FDEM). This method combines the strengths of FE
and discrete element methods to solve transient
dynamic problems that involve multiple deformable
bodies interacting.

Discrete element methods simulate discontinuous
systems consisting of a (typically large) number of
particles, such as powder and granular flows and
geomechanics. Each particle generally has
displacement and rotational degrees of freedom,
can be anything from a point to a polyhedron in
shape, and interacts with the other particles via
contact and possibly attractive potentials such as
cohesion and adhesion. The methods have many
similarities to some molecular dynamics modelling
methods, particularly since in both cases the key
to efficient computation is an effective way of
identifying which pairs of particles are likely to
interact and ignoring interactions between
particles that are too separated to be important.
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FDEM extends the standard discrete element
method by allowing the particles to deform,
simulating the deformation using FE techniques.
This approach makes it possible to simulate the
loading, deformation, and eventual failure, collapse
and post-collapse behaviour of inhomogeneous
objects such as masonry structures. The
technique requires explicit time integration and
generally requires a very small time-step for
stability, but the use of explicit integration means
that the computationally expensive step of matrix
inversion, required for implicit time integration, can
be avoided.

An example of an area where the use of FDEM has
led to a step change in simulation capability is the
modelling of masonry bridges. Masonry is a non-
homogenised material that undergoes softening
and load redistribution as it deforms. Masonry
structures can be considered as consisting of a
set of interacting deformable units, and hence is
ideally suited to simulation with FDEM.

The simulation defines a set of “particles”, typically
consisting of a small number of bricks and the
associated mortar, and meshes each particle with
finite elements. The material properties for these
elements are commonly available. The behaviour of
the mortar joining the particles together is
included by definition of an interface material model
that ensures that the contact interaction
describes the tension, compression, and friction
properties of the mortar correctly.

The Figure 2 shows a FDEM model of a 1000 foot
high brick masonry tower. The tower was proposed
in the latter part of the nineteenth century but
was never built. The simulation here was used to
show that had it been constructed it is likely that
the foundations would have failed and the tower
would have collapsed. By correctly representing
the contact interaction between the brick
particles, as well as their compressive strength, a
realistic simulation of the collapse mechanism was
produced. A far lighter and more efficient tower in
iron was eventually erected by Eiffel
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