
T
he NAFEMS Stochastics Working Group (SWG) has
offered this exercise to the broader simulation
community with the intent to grow individual
capability while serving simulation practitioners
with a new avenue for math-based design. The

SWG has three focal areas, each with a roadmap for
improvement: Technology, Education, and Publication.
Our first Challenge Problem was designed to influence
education collaboration with Academia, Government
and Industry.  There are 2 submissions “X” and “Y” which
have met the entry requirements.  The SWG has
evaluated and compared the submissions with the
intent to draw further discussion and practical research
with the intent to enhance the use of Uncertainty
Quantification by users of simulation-based design. The
challenge problem was originally introduced at 2013
NAFEMS World Congress in Salzburg, Austria. 

Challenge Problem
A typical electronic component or device in a
subsystem may be represented by an equivalent
resistive, inductive and capacitive (R-L-C) series circuit.
The electric transients that occur within the subsystem
are of interest. This particular challenge problem was
chosen because the fundamental equations based on
Kirchhoff’s current and voltage laws are well known and
R-L-C parameters are usually readily available to
electrically characterize components or systems. This
problem is also common among automotive and
industrial application where simple devices are part of a
much larger electrical architecture. The underlying
physics and mathematical model in the form of
ordinary differential equation (ODE) can be solved in a

variety of software tools. Other analogies to such
network include mass attached to a spring and damper
or hydraulic pipe system with a dynamic pump and
paddle wheel. A schematic of the R-L-C network for the
device is shown in Figure 1.

The input signal to the device is a step voltage source
(V) shown in the circle in Figure 1 while the output signal
is the voltage across the capacitor. This capacitive
voltage is sensitive to the R-L-C parameters. For this
system of interest, the network parameters are assumed
to be not known precisely. Uncertain estimates of R-L-C
parameters were made available to the participants of
this challenge. The goal is to evaluate the reliability of
the device using two different criteria and quantify the
value of the information provided regarding R-L-C
parameters.

Requirements
The first functional requirement specifies a minimum
voltage drop of 0.9 Volts across the capacitor element
at a particular time, 10 milliseconds in this case. The
second requirement states the capacitive voltage rise
should occur within a specified duration, 8 milliseconds
in this application. The voltage rise time is defined as the
time from 0% to 90% of the input voltage. These two
requirements can be mathematically represented as:

where VC is the capacitive voltage and t is time.
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Figure 1: Equivalent R-L-C circuit model

40



Mathematical model 
Equations representing this model are stated in the form of ordinary differential equations with zero initial conditions. For
the sake of simplicity, the solution to the network was directly provided here. The system transfer function is defined as:

Depending on the values of R, L and C, the system may be classified as underdamped, critically damped or over
damped. The solution for each case may be obtained as:

Under damped (ζ < 1):

Critically damped (ζ = 1):

Over damped (ζ > 1):

Step voltage source V = 1.0 when t > 0. The coefficients A1, A2 in each case are solved from the initial conditions:

Parametric Characterization 
Four cases of uncertainty estimates on the R-L-C parameters are presented in this challenge problem.

Case A: Intervals

R(Ω) L(mH) C (μF)
[40, 1000] [1, 10] [1, 10]

Case B: Multiple Intervals

Source R(Ω) L(mH) C (μF)
1 [40, 1000] [1, 10] [1, 10]

2 [600, 1200] [10, 100] [1, 10]

3 [10, 1500] [4, 8] [0.5, 4]

Case C: Sampled Points

R(Ω) L(mH) C (μF)
{861, 87, 430, 798, 219, {4.1, 8.8, 4.0, 7.6, 0.7, {9.0, 5.2, 3.8, 4.9, 2.9,

152, 64, 361, 224, 614} 3.9, 7.1, 5.9, 8.2, 5.1} 8.3, 7.7, 5.8, 10.0, 0.7}

Case D: Incomplete Data

Source R(Ω) L(mH) C (μF)
Interval [40, RU] [1, LU] [CL, 10]

Information RU > 650 LU > 6 CL < 7

Nominal 650 6 7
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Challenge Problem Solutions
One team, from the UK’s National Physical Laboratory,
found that the main challenge was assigning
appropriate probability distribution functions (PDFs) to
the resistance, capacitance, and inductance. A key
tool used in solving such problems is the principle of
maximum entropy (PME), as recommended by the
Guide to the Expression of Uncertainty in Measurement
(GUM) and its supplements [1-3]. Applying this principle
to cases A and D led to the team defining rectangular
distributions to all variables in both cases. The variable
limits and the ambiguous term “nominal” in case D
complicated the optimization used when applying the
PME to the problem. Case B required combining
multiple sources of information through log-linear
pooling which produces a single distribution expressed
as a weighted geometric mean of the input
distributions. This approach only works if there is a range
of variable values common to all of the input
distributions, which is not true for the inductance in case
B. In order to obtain a valid distribution, the inductance
range from source 2 was discounted. For Case C, the
team assumed that these values are samples drawn
randomly from an underlying univariate Gaussian
distribution with unknown mean equal to the input
quantity and unknown variance. This approach is
underpinned by Bayes theorem. Once the input
distributions had been obtained, random sampling and
Latin hypercube sampling were used to obtain results for
a range of sample sizes to look at how the results
converged with increasing sample size for each case
(Fig. 2) and the probability of failing to meet the
requirements was evaluated for each model output.

The second team that participated in this challenge
problem exercise used OpenCOSSAN software [4],

which is a general purpose, flexible tool for numerical
analysis, risk and uncertainty quantification. In the
definition of the problem for Cases A and B, only
bounds have been assigned for each uncertain
quantity. According to the principle of maximum
entropy, uniform distributions between the input bounds
were assigned to the R, L and C parameters. Two
distinct failure modes were considered when treating
underdamped circuits and where the rise time or the
voltage requirements are not satisfied. Monte Carlo
simulation was used to compute the failure probability.
A convergence study of the probability of failure with
increasing number of samples was taken into account,
leading to a trade-off between the simulation accuracy
and execution time. In Case B, three distinct
probabilities of failure were computed for three sources.
These probabilities can be either kept as independent
solutions or can be combined through assigning a
weight to each source. 

For Case C, it was assumed that the data points are the
only possible values from a discrete pool.  In this case
the exact value of the probability of failure can be
obtained by exploring all the possible combination and
count the combinations that do not satisfy the
requirements.  However this approach can have
numerical limitations as the input space grows and the
number of combinations grows exponentially (curse of
dimensionality).  For Case D, the lower or upper bound
for some of the variables are not defined.  A parametric
study was carried out by assigning different values to the
bounds and exploring how the probability of failure
evolved in function of the upper bound of R, L and the
lower bound of C.  Conclusions have been drawn on
the importance of the different parameter over the
probability of failure. Figure 3 shows the sample
distribution of model response from discrete
combinations of input parameters. The relative
importance of R, L and C factors on voltage
requirement can be observed in Figure 4.

Critical Review and Open Issues
The criteria for review, evaluation, and comparison of
the challenge problem submissions was defined by the
SWG based on what extent the given tasks were
completed, technical significance of the solution in
advancing the role of stochastics for robust design,
general applicability of the proposed method,
presentation and clarity of the assumptions.

Uncertainty propagation is carried out in both
submissions for most cases using the Monte Carlo
approach, both traditional and Latin Hypercube based
sampling. These methods can easily be applied and
generalized to other problems by non-specialists in
stochastics. Both submissions report and discuss results
for all 4 cases, although different approaches /
assumptions were made for all but Case A. ‘Value of

Figure 2: Convergence of Probabilities with Sample Size

Table 1: Results of Submission #1

Table 2: Results of Submission #2
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information’ or confidence level is not
discussed in either paper but the
focus was rather on convergence of
solution based on sample size. As the
traditional Monte Carlo sampling
approach was taken by both, no
advancement of methods or role of
stochastics for robust design is
promoted in the submissions. One
drawback of direct Monte Carlo
approach is its limited accuracy with
not very high sample size to estimate
probabilities far in the tail and more
advanced methods might be
required.

Potential limitations exist based on
approaches taken for Case B in both
submissions.  One submission may
under estimate reliability based on
use of overlapping range only for
each parameter (not extreme
ranges).  The other submission
presented separate results for each
source of parameter intervals, but no
recommendation on which results to
use.  When discrete input data is
provided, one submission generated
discrete output data while the other
created a continuous distribution thus
leading to different probability
estimates. In case of missing data,
different approaches were taken for
characterizing input uncertainty. One submission
assumed uniform distributions about the given nominal
to fill in missing values, based on maximum entropy.  The
second submission assumed missing values to be m
times the nominal, and tried several values to define the
interval, but no discussion of which results to
recommend is provided. A discussion of limitations was
not provided in the submissions. An opportunity for further
discussion exists in each case.

The agreement in approach and results for Case A
provides a point of verification.  With the other cases,
different approaches are taken and several open issues
for discussion can be raised:

The first question here is perhaps the most important –
given an approach to address each of the other
questions, verification of results and level of confidence
in the obtained results is always necessary to justify 

decisions based on these results. Stochastic Working
Group will continue to learn from the challenge problem
open items to develop a strategy for publications,
education and industry outreach in the area of
uncertainty quantification and propagation for large
computational models.
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Figure 3: Various of Combinations of R, L, C

Figure 4: Effect of R, L and C on Voltage Requirement




